Dr. E. Hellmann

Algebraic Geometry I Exercise Sheet 11 Due Date: 16.01.2014

Exercise 1:

Let X be a scheme and $U \subset X$ be an open subscheme. Let us write $j: U \to X$ for the canonical inclusion and let \mathscr{F} be an \mathcal{O}_U -module. Define the sheaf $j_! \mathscr{F}$ on X to be the sheafification of

$$j_{!}\mathscr{F}:V\longmapsto\begin{cases} 0 & V\not\subset U\\ \mathscr{F}(V) & V\subset U\end{cases}$$

- (i) Show that $j_!\mathscr{F}$ is an \mathcal{O}_X -module.
- (ii) Given $x \in X$ show that $(j_! \mathscr{F})_x = \mathscr{F}_x$ if $x \in U$ and $(j_! \mathscr{F})_x = 0$ otherwise.
- (iii) Show that $j^* j_! \mathscr{F} = \mathscr{F}$.
- (iv) Use the functor $j_!$ to give examples of \mathcal{O}_X modules that are not quasi-coherent.

Exercise 2:

Let $X = \operatorname{Spec} A$ be an affine scheme. Show that the functors $(-) : (A - \operatorname{Mod}) \to (\mathcal{O}_X - \operatorname{mod})$ and $\Gamma(X, -) : (\mathcal{O}_X - \operatorname{mod}) \to (A - \operatorname{mod})$ are adjoint, i.e. for an A-module M and an \mathcal{O}_X -module \mathscr{F} there is an isomorphism

$$\operatorname{Hom}_A(M, \Gamma(X, \mathscr{F})) \cong \operatorname{Hom}_{\mathcal{O}_X}(\tilde{M}, \mathscr{F})$$

which is functorial in M and \mathscr{F} .

Exercise 3:

(i) Let $f: X \to Y$ be a morphism of schemes such that

$$f$$
 is quasi-compact and for $W \subset Y$ open and quasi-compact
 $U, V \subset f^{-1}(W)$ quasi-compact open $\Longrightarrow U \cap V$ quasi-compact open. (1)

Let \mathscr{F} be a quasi-coherent \mathcal{O}_X -module. Show that $f_*\mathscr{F}$ is a quasi-coherent \mathcal{O}_Y -module. (Hint: Reduce to the case $Y = \operatorname{Spec} B$ and find a finite cover $X = \bigcup U_i$ with open affine subschemes U_i and finite open affine covers $U_i \cap U_j = \bigcup_{k \in I_{ij}} V_{ijk}$. Then use the fact that $f_*(\mathscr{F}|_{U_i})$ and $f_*(\mathscr{F}|_{V_{ijk}})$ are known to be quasi-coherent.)

(ii) Let $f: X \to Y$ be a morphism on schemes such that either X is noetherian (as a topological space) and on underlying topological spaces f is the embedding of an open subspace, or f is the embedding of a closed subspace. Show that f satisfies the property (1).

Exercise 4:

Let k be an (algebraically closed) field and fix an k-rational point $\infty \in \mathbb{P}^1_k = X$. Define sheaves of \mathcal{O}_X -modules $\mathcal{O}(1)$ and $\mathcal{O}(-1)$ by

$$\mathcal{O}(-1): U \longmapsto \{ f \in \Gamma(U, \mathcal{O}_X) \mid f(\infty) = 0 \}$$

and $\mathcal{O}(1) = \mathscr{H}om_{\mathcal{O}_X}(\mathcal{O}(-1), \mathcal{O}_X)$. Further for an integer $n \ge 0$ we define $\mathcal{O}(n) = \mathcal{O}(1)^{\otimes n}$ and $\mathcal{O}(-n) = \mathcal{O}(-1)^{\otimes n}$. Let $n \in \mathbb{Z}$.

- (i) Show that $\mathcal{O}(n)$ is a quasi-coherent \mathcal{O}_X -module.
- (ii) Show that for $m, n \in \mathbb{Z}$ one has $\mathcal{O}(m) \otimes_{\mathcal{O}_X} \mathcal{O}(n) \cong \mathcal{O}(m+n)$.
- (iii) Show that $\Gamma(X, \mathcal{O}(n))$ is a finite dimensional k-vector space of dimension

$$\dim_k \Gamma(X, \mathcal{O}(n)) = \begin{cases} 0 & n < 0\\ n+1 & n \ge 0 \end{cases}$$

(iv) Show that the functor $\Gamma(X, -)$ on the category of quasi-coherent \mathcal{O}_X -modules does not commute with tensor products. This is find quasi-coherent \mathcal{O}_X -modules \mathscr{F} and \mathscr{G} such that

$$\Gamma(X,\mathscr{F}\otimes_{\mathcal{O}_X}\mathscr{G})\cong\Gamma(X,\mathscr{F})\otimes_{\Gamma(X,\mathcal{O}_X)}\Gamma(X,\mathscr{G}).$$

(v) Give an interpretation of $\mathcal{O}(n)$ as a subsheaf of the constant sheaf <u>K</u> on X, where $K = k(\mathbb{P}^1_k)$ denotes the function field of \mathbb{P}^1_k , i.e. $K = \mathcal{O}_{X,\eta} = \operatorname{Frac} \mathcal{O}_{X,x}$, where η is the generic point of X and x is an arbitrary point of X

Homepage: www.math.uni-bonn.de/people/hellmann/alggeom