Dr. E. Hellmann

Algebraic Geometry I Exercise Sheet 10 Due Date: 09.01.2014

Exercise 1:

Let k be a field and $n, m \ge 1$.

(i) Show that there is a morphism $\tilde{f}: \mathbb{A}_k^{n+1} \times \mathbb{A}_k^{m+1} \to \mathbb{A}^{nm+m+n+1}$ that is on *R*-valued points given by

$$(a_0,\ldots,a_n),(b_0,\ldots,b_m)\longmapsto (a_ib_j)_{\substack{i=0,\ldots,n\\j=0,\ldots,m}}$$

for an k-algebra R and describe the induced morphism of k-algebras on the global sections of the structure sheaves.

- (ii) Given an integer l write $X_l \subset \mathbb{A}_k^l$ for the open subscheme $X_l = \mathbb{A}_k^l \setminus \{0\}$. Show that \tilde{f} induces a morphism $X_{n+1} \times X_{m+1} \to X_{nm+n+m+1}$.
- (iii) For an integer l let $p_l : X_{l+1} \to \mathbb{P}_k^l$ denote the canonical projection. Show that there is a unique morphism $f : \mathbb{P}_k^n \times \mathbb{P}_k^m \to \mathbb{P}_k^{nm+n+m}$ such that the following diagram commutes:

$$\begin{array}{c|c} X_{n+1} \times X_{m+1} & \xrightarrow{\tilde{f}} & X_{nm+n+m+1} \\ p_n \times p_m & & & \downarrow \\ p_n \times p_m & & & \downarrow \\ \mathbb{P}_k^n \times \mathbb{P}_k^m & \xrightarrow{f} & \mathbb{P}_k^{nm+n+m} \end{array}$$

- (iv) Show that f is a closed immersion called the Segre embedding.
- (v) Describe the image of the Segre embedding $\mathbb{P}^1_k \times \mathbb{P}^1_k \hookrightarrow \mathbb{P}^3_k$.

Exercise 2:

For an \mathbb{R} -scheme X write $X_{\mathbb{C}}$ for the extension of scalars from \mathbb{R} to \mathbb{C} and $\sigma_X : X_{\mathbb{C}} \to X_{\mathbb{C}}$ for the automorphism of $X_{\mathbb{C}}$ induced by the complex conjugation on \mathbb{C} .

- (i) Let X and Y be \mathbb{R} -schemes. Show that a morphism $f : X_{\mathbb{C}} \to Y_{\mathbb{C}}$ of \mathbb{C} -schemes is the extension of scalars of a morphism of \mathbb{R} -schemes $f_0 : X \to Y$ if and only if $f \circ \sigma_X = \sigma_Y \circ f$ in which case f_0 is uniquely determined.
- (ii) Let X be an \mathbb{R} -scheme such that $X_{\mathbb{C}} \cong \mathbb{A}^1_{\mathbb{C}}$. Show that $X \cong \mathbb{A}^1_{\mathbb{R}}$.
- (iii) Let X be an \mathbb{R} -scheme such that $X_{\mathbb{C}} \cong \mathbb{P}^1_{\mathbb{C}}$. Show that either $X \cong V_+(T_0^2 + T_1^2 + T_2^2) \subset \mathbb{P}^2_{\mathbb{R}}$ or $X \cong \mathbb{P}^1_{\mathbb{R}}$.

Exercise 3:

- (i) Let $X = \operatorname{Spec} A$ be an integral k-scheme of finite type and let $0 \neq f \in A$. Show that the closed subscheme $\operatorname{Spec} A/(f)$ of X has dimension dim X 1. (Hint: Krull's principal ideal theorem)
- (ii) Let $Y = \operatorname{Spec} k[T_1, T_2]/(T_1T_2, T_1^2) \subset \operatorname{Spec} k[T_1, T_2] = \mathbb{A}_k^2$. Show that Y is irreducible and $\dim Y = 1 = \dim \mathbb{A}_k^2 1$ but there is no $f \in k[T_1, T_2]$ such that Y = V(f).
- (iii) Let X be a k-scheme of finite type and $x \in X$. Show that dim $\overline{\{x\}}$ equals the trancendence degree of $\kappa(x)$ over k.

Exercise 4:

Let S be a base scheme and let $p: G \to S$ be an S-scheme such that the functor $G: \operatorname{Sch}_S^{\operatorname{opp}} \to (\operatorname{Sets})$ factors through the forgetful functor (Groups) $\to (\operatorname{Sets})$. Show that G is a group scheme over S i.e. there exist morphisms $m: G \times_S G \to G$ and $i: G \to G$ as well as a section $e: S \to G$ to p such that the following diagrams are commutative:

Associativity:

Existence of neutral element:

Existence of inverse elements:

Homepage: www.math.uni-bonn.de/people/hellmann/alggeom

Frohe Weihnachten und einen guten Rutsch ins Neue Jahr!

